Yearling Systems

Mary Drewnoski, Beef Systems Specialist Jim MacDonald, Professor, Beef Systems

Nebraska is unique in beef

NEBRASKA •

PLACE STICKER HERE

- THE BEEF STATE
- 1. Water
- 2. Corn Production
- 3. Ethanol Production (distillers grains)
- 4. Grasslands (feeder calf supply)
- 5. Slaughter Capacity
- 6. Industry spread out

What are the potential benefits of adding a yearlings to a cow/calf operation?

Feed ingredient prices expressed as a function of their energy content.

Item	\$/unit	\$/ton (DM)	TDN, %	\$/lb TDN
Sandhills range, stocker	\$67.05/month ¹	\$146.94	63	0.1166
Grass hay	\$110/ton	\$122.22	55	0.1111
Grazed corn residue	$20/acre^2$	\$25.00 ³	55	0.0227
Baled corn residue	\$65/ton	\$72.22	43	0.0840
Corn silage	\$70.26/ton ⁴	\$200.75	70	0.1434
Cracked corn	\$6.75/bushel	\$278.37	83	0.1678
Dried distillers grains	\$291.00	\$323.33	108	0.1497
USDA Daily Ethanol		(116% corn)		

¹Cornhusker Economics for North Region, published March, 2022. Assumes 1.3 AUM/pair and 90% DM.

²Crop residue exchange.

³Assumes 200 bushel/acre corn harvest and 8 lb/bushel forage availability

⁴Assumes \$6.50 corn price with a 7.65 multiplier \$10 hauling/packing, and 15% shrink.

Prices updated 1/10/23

- What is the optimum:
 - Target rate of gain during winter?
 - Slow (1 lb or less) or fast (1.5 to 2.0 lb)?
 - Month for selling calves? (July vs. September)

Model

- Fast winter growth (2.0 lb/d)
- Slow winter growth (0.8 lb/d)
- Market in July
- Market in September

Merical et al. 2021. Economics of Yearling systems

Yearling System flow

Supplementation of weaned calves on 200 bu/ac corn residue

	No Suppl.	Corn	Corn+ Urea (5%)	DDGS
DM, Ib	-	3.75	4.0	3.0
TDN, %	-	83%	78%	104%
TDN, lbs	-	3.11	3.12	3.12
CP, lbs	-	0.37	0.92	0.90

Tibbitts et al., 2016 Beef Report, p 31

	No Suppl.	Corn	Corn + Urea	DDGS
Initial BW	516	516	516	516
Ending BW	504 ^a	539 ^b	559 ^c	629 ^d
ADG, lb	-0.18ª	0.31 ^b	0.53 ^c	1.32 ^d

Tibbitts et al., 2016 Beef Report, p 31

DDG supplementation on grazed corn residue

Supplementation, % BW

Welchons 2017 UNL Beef Report p 34

Rate of winter gain and length of grazing

Winter DDGS, lb/d]	1.3	7.0		
	Slow		Fast		
	July	Sept	July	Sept	
Winter gain, lb/d	0.79	0.79	2.04	2.04	
Winter BW, lb	627	627	785	785	
Grass gain, lb/d	2.45	2.01	1.44	1.29	
Grass BW, lb	779	866	867	938	

Morris et al. (1996 Beef Report pp. 51-53)

Wintering costs (\$/steer) 1999-2017

	Fast	Slow
Processing	\$15	\$15
Receiving (14 d yardage/feed)	\$26.25	\$26.25
Animal Interest (5.6% 0.35 yr)	\$8.79 - \$29.26 (\$14.07)	\$8.79 - \$29.26 (\$14.07)
Death Loss (1%)	\$4.49 - \$14.93 (\$7.18)	\$4.49 - \$14.93 (\$7.18)
Corn Residue (\$0.56 hd/d)	\$71.12	\$71.12
Distillers (\$71 - 282/ton)	\$31.34 - \$125.37	\$5.82 - \$23.28
(\$137/ton)	(\$61.04)	(\$11.34)
Mineral (\$0.05/hd/d)	\$6.35	\$6.35
Feed Interest (5.6% 0.35 yr)	\$1.47 - \$2.39 (\$1.76)	\$1.22 - \$1.39 (\$1.27)
Wintering Cost	\$170 - \$271 (\$203)	\$142 - \$176 (\$153)

Grass costs

• Based on historic pasture rental rates (Jansen and Stokes, 2018)

Spring and summer costs \$/steer (1999 – 2017)

	Fast	Fast	Slow	Slow	
	July	September	July	September	
Spring Feed (91 d)	\$42.97 - \$150.71	\$42.97 - \$150.71	\$42.97 - \$150.71	\$42.97 - \$150.71	
	(\$66.06)	(\$66.06)	(\$66.06)	(\$66.06)	
Spring Yardage (\$0.25/d)	\$22.75	\$22.75	\$22.75	\$22.75	
Summer Grass	\$23.02 - \$66.62	\$44.56 - \$128.95	\$23.02 - \$66.62	\$44.56 - \$128.95	
(62 d vs 120 d)	(\$38.22)	(\$73.97)	(\$38.22)	(\$73.97)	
Interest on Feed	\$0.60 - \$1.40	\$0.96 - \$1.92	\$0.60 - \$1.40	\$0.96 - \$1.92	
	(\$0.80)	(\$1.31)	(\$0.80)	(\$1.31)	
Interest on Animal	\$14.65 - \$40.48	\$20.23 - \$55.90	\$12.74 - \$36.17	\$17.60 - \$49.95	
	(\$22.71)	(\$31.36)	(\$19.91)	(\$27.49)	
Spring/Summer Cost	\$116 - \$241	\$145 - \$289	\$113 - \$236	\$142 - \$284	
	(\$151)	(\$195)	(\$147)	(\$192)	
Total Cost	\$292 - \$512	\$323 - \$560	\$257 - \$405	\$285 - \$452	
	(\$353)	(\$398)	(\$300)	(\$344)	

<u>][/][</u>

Merical et al. 2021. Economics of Yearling systems

Calves with compensatory growth eat more relative to BW

		Summer	-		DM
Winter	Summer	Intake, %)		intake
ADG, lb/d	ADG, lb/d	BW		BW	lb/d
1.43	1.57	2.53	-	750	19.0
0.54	2.02	3.13		600	18.8

Wilson et al, 2000 NE Beef Report

Calves with compensatory growth eat more relative to BW

	Cool s	eason g	rass	Warm season grass			
Winter	Summer	Intake	Intake	Summer	Intake	Intake	
ADG	ADG	lb/d	% BW	ADG	lb/d	% BW	
1.5	2.15	15.4	1.92	2.28	20.9	2.29	
0.5	2.55	15.7	2.52	2.74	21.1	2.80	

Creighton et al, 2001 NE Beef Report

Winter rate of gain

Treatments	IBW	EBW	ADG
Pen Hi	534	795	2.21
Pen Lo	534	723	1.61
Stalks Hi	536	777	2.21
Stalks Lo	535	677	1.15

Initial BW Differences

% of BW difference

Intake as % of Body Weight

Calves with compensatory growth eat more relative to BW

Stocking rate does not need to be decreased in the summer with heavier calves coming out of winter

Profitability Comparison

\$/steer from 1999 through 2017 (19 years)

	Years Profitable	Average Net Profit	Maximum Net Profit	Minimum Net Profit
February Fast	10	\$45.02	\$211.53	-\$80.57
February Slow	6	-\$24.10	\$126.63	-\$195.43
July Fast	16	\$123.03	\$691.07	-\$196.40
July Slow	16	\$128.30	\$634.67	-\$211.06
September Fast	15	\$142.83	\$790.06	-\$276.56
September Slow	13	\$112.62	\$719.93	-\$312.26

Merical et al. 2021. Economics of Yearling systems

Cattle Price Jul-Sep Comparison

	Fa	ist	Slow		
	Market in July	Market in July September		Market in September	
Animal Weight	1,010	1,076	915	1,005	
Market Price (\$/cwt.)	\$67.40 - \$208.75 (\$118.96)	\$72.95 - \$210.74 (\$117.16)	\$72.83 - \$215.67 (\$126.95)	\$72.95 - \$210.74 (\$117.16)	

¹Prices are displayed as ranges between minimum and maximum values across years followed by the average in parentheses.

Merical et al. 2021. Economics of Yearling systems

Yearling System Cumulative Profit Margins (\$/lb.)

Summary

- Feb. Sales Fast Growth Winter diet
- Jul. Sales it depends
 - Slow Growth Winter diet slightly better returns and less risk in declining market
 - Fast Growth Winter diet provides flexibility
- Sep. Sales Fast Growth Winter diet

What about implants?

- Should you....
 - Not implant?
 - Implant in the winter only?
 - Implant in the summer only?
 - Implant in both?

Steer Management

Winter Performance

Ending BW, lb

Summer performance

	Treatments								
	Low Gain		High Gain		P-value				
	NONE	MED	STRNG	NONE	MED	STRNG	Rate	Implant	Int
Inital BW, lb	738	751	760	850	850	888	<0.01	<0.01	0.15
End BW, lb	816	842	845	904	918	962	<0.01	<0.01	0.10
ADG, lb	1.42	1.62	1.53	0.98	1.23	1.30	<0.01	0.02	0.48

Summer BW gain, lb

Economic Decisions #1 Winter rate of gain

Difference is net revenue from high winter gain with and without implants and low winter gain

Economic Decisions #2 When to implant (low winter gain)

Difference is net revenue from low winter gain with and without implants

Economic Decisions #3 Winter rate of gain + Implants

Economic Decisions #3 Winter rate of gain + Implants

N

Economic Decisions #3 Winter rate of gain + Implants

Finishing retained their wt advantage

Ralgro+RevG 30 lbs Rev G 10 lb Hi 51 lb Hi plus implants 75 lb

HCW, lb

Take home

- Implanting pays
- Targeting a 2.0 lb rate of gain in winter increases risk but also increases potential reward especially when coupled with implanting
 - If couple high rate of gain and implants, target sell in July?

Take Home

- Most years there is opportunity in backgrounding calves.
- Invest energy and protein during the winter.
- Implants have one of the highest ROI in the industry
 - Natural programs need to pay \$30-\$100 to offset the value of an implant.

Let's talk!

