Diet Selection and Animal Behavior

Mitch Stephenson – Range Management Specialist

Rangelands are Social-Ecological Systems

	bai Ecological Syster	m	and the second		Regional - Global	Social System	
Climate change	Local Ecosyste	m	Natural Mana	l Resource agement	Local Social System	Commodities markets	
Plant & animal invasions Migration patterns fectonics	Geology/Soils Plant & animal invasions Climate/weather Topography Trophic dynamics	Livest Speci Spat Temp	Preda ock Grazing es and kind lumber ial pattern oral pattern	ator/pest/weed control Hunting Mining	Landowner goals Micro-economics Community governance Social norms	Trade policies Carbon policies Demographics Conservation agendas International	
CO ₂ & N fixation Weather (El Niño/La Niña, drought, etc.)			Water control Burning and/or fire prevention		Nationa		

From Hruska et al. 2017 – Rangelands as social-ecological systems

Grazing Management

SPATIAL PATTERN Spatial grazing distribution

<u>TEMPORAL PATTERN</u> Season of grazing Rotation of grazing Recovery following grazing Livestock Grazing Species and kind Number Spatial pattern Temporal pattern SPECIES AND KIND Sheep Goats Cow/calf Yearlings Horses Bison Chickens

> <u>NUMBER</u> Stocking Rate Stock density

Grazing Management

 "The manipulation of animal grazing to achieve desired results based on animal, plant, land, or economic responses." -Valentine 2001-

Distribution

"Many of the concerns regarding livestock grazing on rangelands are the result of uneven livestock distribution rather than inappropriate stocking rates." (Bailey 2005)

Changing attributes of the pasture	Modifying animal behavior
Season of use	Salt, mineral, protein supplements
Cross fencing pastures	Low-stress herding
Increasing water locations	Breed selection
Fire: Patch-burn	Genetic selection

Distribution

Cattle often avoid:

- Steep slopes

- High elevations

- Areas far from water

(Mueggler 1965) (Roath and Krueger 1982) (Vallentine 1947)

Watering locations

Distance from Water	Utilization(%)
0 – 0.5 miles	50
0.5 – 1.0 miles	38
1.0 – 1.5 miles	26
1.5 – 2.0 miles	17
2.0 – 2.5 miles	12

Chihuahuan desert in southern NM

Season of use

Sioux County, NE

74% of diet = needle and thread, bluegrass, sedge April 10 to May 22 -Volesky et al. 2007

Prairie sandreed, sand bluestem = highly selected Little bluestem, grama, forbs = less selected -Northrup 1993

GSL 2020 Forage Quality- CP%

Growing Season Date

Growing Season Date

Growing Season Date

Sandhill Plant Community

Cross fencing and adding water

	Pasture	May	Jun	Jul	Aug	Sep	Oct
University Lake							
	2						
the second	3						
	4						

Heavy Grazing
 Moderate Grazing
 Light Grazing

Salt, Mineral, Protein supplements

Low stress herding

"...livestock-centered, behaviorally-correct, psychologically-oriented, ethical, and humane method of working livestock based on mutual communication and understanding." (Stockmanship Journal, Hibbard 2012)

Breed and Genetic Selection Hereford vs. Santa Gertrudis Miles traveled per day

Season	Hereford	Santa Gertrudis
Fall	5.3	8.0
Winter	5.2	6.1
Spring	4.6	8.3
Summer	4.3	9.1

"Activities of Hereford and Santa Gertrudis cattle on a southern NM Range". Herbel and Nelson 1966

Applications for Livestock Production

 GPS tracking can assist in the genetic selection of replacement cattle that use a larger region of the pasture

Bottom Dweller

Bailey et al. 2015

"Large herbivore foraging and ecological hierarchies", Senft et al. 1987

Large herbivores make foraging decisions at multiple spatial scales

Many factors affect these decisions

Preference and Aversion

"Understanding landscape use patterns of livestock as a consequence of foraging behavior", Launchbaugh and Howery 2005

Post-ingestive feedback

"Understanding landscape use patterns of livestock as a consequence of foraging behavior", Launchbaugh and Howery 2005

"Understanding landscape use patterns of livestock as a consequence of foraging behavior", Launchbaugh and Howery 2005

Diet Selection

65% diet overlap in the Flint Hills of Kansas (Sowers et al. 2019)

Goats

- Prefer browse also eat forbs
- Selective grazers
- Very tolerant to secondary plant compounds

From http://www.webpages.uidaho.edu/

Sheep

- Prefer forbs and grasses
- Selective grazers
- More tolerant of secondary compounds than cattle

Cattle

- Prefer Grasses
- Less selective
- Graze more uniformly
- Least tolerant of secondary plant compounds

Grass

Cattle tracking in Nebraska

- Cattle visually observed over 24-hr periods in 1938 - 5 times
- Spotlight and car
 - Noted: full moon nights were helpful
- Observers recorded cattle behavior at ½ hr intervals

Where are my cattle grazing?

How does topography influence cattle

- Cattle graze lowlands and flat plains more intensively than open slopes and uplands.
- Understanding the interaction between topography, grazing patterns, and management is important for improving rangeland health and diversity.

Raynor et al. 2021 – Cattle grazing distribution patterns related to topography across diverse rangeland ecosystems of North America Agricultural USDA

IVERSITY of NEBRASKA-LINCOLN

Predicting cattle grazing locations

Predicting cattle grazing locations

<u>Resource selection</u> probability functions (RSPF)

- An estimate of the true probability of use of a given pixel
- Identify areas of the pasture that receive higher grazing pressure under different grazing strategies

Barta Brothers Ranch

Raynor et al. 2021. "Cattle grazing distribution in relation to topography across diverse rangeland ecosystems"

Relating GPS tracking to rangeland health

Plant community and ground cover

Greater in heavily grazed areas	Greater in lightly grazed areas
Western ragweed	Wild rose
Scribner's rosettegrass	Needle and thread
Kentucky bluegrass	Little bluestem
Annual invasive grasses	Prairie junegrass
Blue grama	Vegetation cover
Bare ground	

.

> 32 up to 240 hrs

• Little bluestem plants collected in areas with longterm <u>heavy</u> grazing intensity had fewer roots than plants collected in areas with long-term <u>low</u> grazing intensity

• Long-term grazing intensity was the result of differences in grazing distribution across the pasture

• 52% of carbon in regrowing shoots comes from below-ground remobilization during the first 30 days after defoliation (Yang et al. 2023)

Predicting cattle grazing locations

Figure 1. Responses of grassland birds in shortgrass steppe to a vegetation structure gradient (modified from Knopf 1996).

Derner et al. 2009

Grazing behavior

- Spatial influence on vegetation composition and structure
- Grazing tolerant grasses and forbs
- Multiple ecosystem structures within the same pasture

Grazing management strategies

Management Level	Grazing Strategy	# of Pastures	Definition	Stock Density	Pasture size	Cost (fence, water, labor)	Opportunity for adaptive
Extensive	Continuous grazing	1	Grazing on a specific pasture throughout the entire growing season or year.		↑	1	management
	Deferred rotation grazing	2 to 7	Rotational grazing that annually provides a portion of the pastures deferment until plants have reached reproductive maturity. Pastures are only grazed one time per growing season.				
	Adaptive multi-paddock grazing	8 or greater	Rotational grazing with relatively short grazing periods. This grazing strategy can incorporate multiple grazing events based on plant regrowth characteristics or can have only single grazing events during the growing season.				
Intensive	Mob grazing	Several	Typically grazing with large numbers of animals on relatively small pasture for a short time period (Very high stocking densities). Extremes of this strategy may have animals stocked at levels that require multiple moves in a single day.				N.

Grazing pressure and livestock production

 Grazing Pressure = An animal to forage relationship measured in terms of animal units per unit weight of forage at any instant, i.e., AU/kg or ton.

How to increase harvest efficiency

"A guide for planning and analyzing a year-round forage program", Waller et al. 1986

Tracking cattle within a Patch-burn system

Cellular Cattle GPS Tracking

Easily track your cattle with cellular technology

With no base station to install, you can quickly connect one of our cellular GPS trackers to your animals in minutes. The tracking device will operate on the local cellular network and provide locations directly to your phone or computer.

Location updates can be as fast as every 5 minutes. Update frequency can be changed remotely.

Connecting a cellular tracking device to the animal can sometimes be tricky. We see many users attaching collar and strapping this to the animal. Sim cards are included and the device will automatically connect to animal travels outside of cellular coverage, you will not receive any livestock tracking updates.

Battery life estimates for the cellular based cattle/animal trackers are as follows:

- 15 Minutes 11 Weeks
- 1 Hour 44 Weeks
- 6 Hour 257 Weeks
- https://www.lonestartracking.com

- \$120 per unit
- \$10 leather tool belt
- \$8.50 per month
- First time we have had realtime data

Spayed heifers: 100 hd with a May turn out (8 with GPS collars)

Burn May 2023

- Selection for burn patch decreased as growing season progressed
- Make data driven decisions based on cattle behavior

N-5 N-6

N-7

 Compliment pasture observations

Burn March 2022

2022 Forage Quality

2022 spayed heifer performance

Note:
Only year 1 results - Need more research to make strong conclusions
Greater selection opportunities on the Burn/Graze

 Higher stock density on the deferred rotation

Spring Prescribed Burn + Grazing Burn 2022 Burn 2023 Un-burned March 2022 <u>26, 2022</u> 0.75 -Grazed 0.50 -Pasture N-5 Proportion June 2022 N_{-6} 0.25 soopailin sparship aushous carescere scopailin espelosibe paushous

Plant Type

le bluestem

Targeted grazing to control cheatgrass in mixed-grass rangeland

Targeted grazing to control cheatgrass in mixed-grass rangeland

Grass species in diet

Targeted grazing to control cheatgrass in mixed-grass rangeland

Figure 6. Reduction in brome seed production from targeted spring grazing, compared with summer grazing, in Scottsbluff and Cheyenne, 2017-2020. Seed production was not measured in Scottsbluff in 2017.

Potential to focus cattle grazing on cheatgrass areas and off native grass areas with virtual fence

Virtual Fence

- Management of grazing across large pastures
- Novel research questions
 - Timing of grazing
 - Frequency of grazing
 - Grazing pressure
 - Invasive species management
 - Wildlife habitat at strategic locations
- Tradeoffs
 - Fence vs herding vs virtual fence
 - "New" vs "old" management

First virtual fence prototypes early 2000s - Anderson 2007

UNIVERSITY of NEBRASKA-LINCOLN

Virtual Fence – Effect on Heart Rate

Blue line - Heart Rate Orange line - Movement

No difference in heart rates with and without virtual fence collars

UNIVERSITY of NEBRASKA-LINCOLN

Virtual Fence – Stress to Animal

 "Main cattle behaviour on pasture was not affected by the fencing system. Live weight gain, herbage consumption and fecal cortisol metabolites also revealed no significant differences." (Hamidi et al. 2022)

D. Hamidi^{a,*}, N.A. Grinnell^a, M. Komainda^a, F. Riesch^{a,c}, J. Horn^a, S. Ammer^b, I. Traulsen^b, R. Palme^d, M. Hamidi^e, J. Isselstein^{a,c}

^a University of Goettingen, Department of Crop Sciences, Grassland Science, Von-Siebold-Str. 8, D-37075 Göttingen, Germany ^b University of Goettingen, Department of Animal Sciences, Livestock Systems, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany

^c Centre for Biodiversity and Sustainable Land Use, Büsgenweg 1, D-37077 Göttingen, Germany

for grazing

^d University of Veterinary Medicine, Department of Biomedical Sciences, Unit of Physiology, Pathophysiology and Experimental Endocrinology, Veterinärplatz 1, 1210 Vienna, Austria ^e Heisterholz-Mühle 1, D-30916 Isernhagen, Germany

UNIVERSITY of NEBRASKA-LINCOLN

Art of grazing management

- Virtual Fence and other technologies provide viable tools (paint brushes) for cattle grazing management.
- They do not replace a skilled grazing manager (painter).
- Early stages of development at commercial scales
- Weigh cost:benefits

Wrap Up

- Multiple variables influence livestock grazing distribution (e.g., distance to water, topography, pasture size, stock density, etc.)
- Poor grazing distribution causes areas of heavy grazing and areas of light grazing
 - Reduces harvest efficiency, but may have some benefits in some situations (Uniform grazing may not always be the best)
- Cattle select mostly grasses, but this can vary depending on the time of year and the grass quality
- Adaptive grazing management is an <u>ART</u> because of so much spatial and temporal variability

Questions

Mitch Stephenson Range Management Specialist Panhandle Research and Extension Center mstephenson@unl.edu (308) 632-1355 - Work (307) 321-5827 - Cell

Cattle tracking in Nebraska - GPS

- GPS technology continuous tracking
 - 3 weeks to 3+ months
 - 1-sec to 10-min intervals

The Nebraska Sandhills: A unique and important working landscape

- 20,179 square miles (12.9 million acres)
- Lands of the Pawnee and Sioux
- Largest sand dune formation in the western hemisphere
- One of the most intact grasslands in the world
- Over 720 different plant species
- Key habitat for plant and wildlife
- Important wetland system for the Great Plains
- Social Ecological Systems = livelihoods and communities

GSL 2020 Forage Quality- TDN%

Study site location: UNL Gudmundsen Sandhills Laboratory (GSL)

Data Collection

- May 19th to August 5th
- Every 7-15 days
- Current years growth only
- Sampled 10-20 different plants (1-2 handfuls)

Data Collection- cont.

- Samples dried at 60°C for 48 hours
- Samples sent to Ward Labs
 - Wet Chemistry Analyzes
 - Crude Protein (CP) %
 - Total Digestible Nutrients (TDN) %

Plant Community

Plant Functional	Number of	
group	Species	% of Total Species
orbs	60	67%
Cool season grasses &		
grasslike	11	12%
Varm season grasses	11	12%
hrubs	8	9%
otal	90	100%

