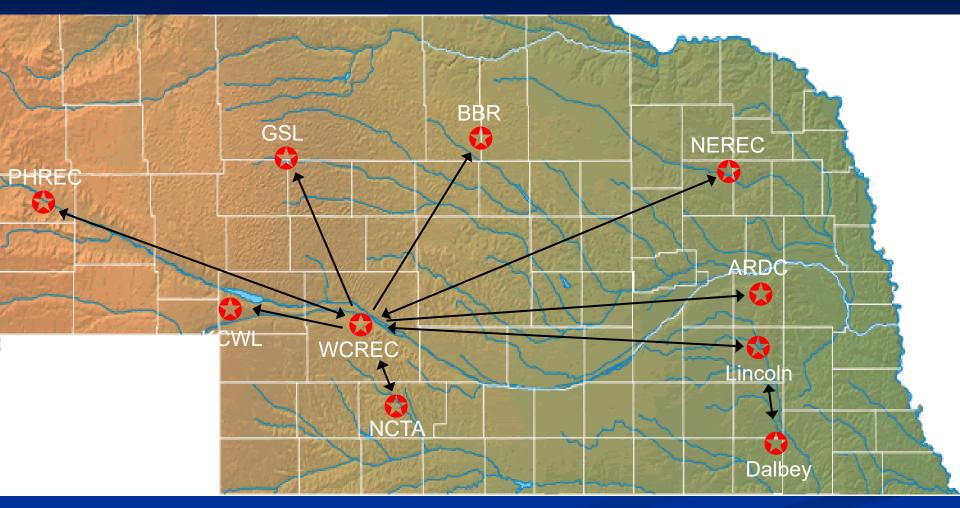
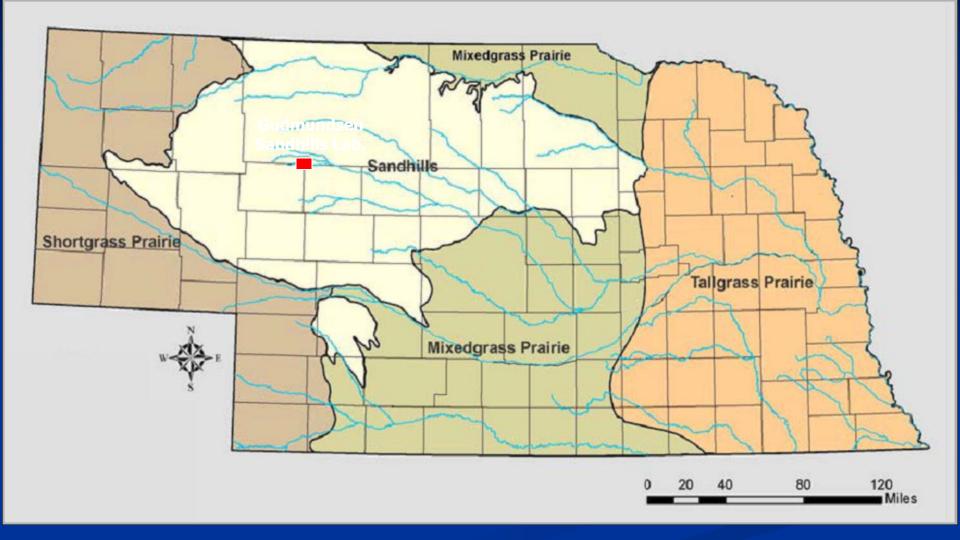
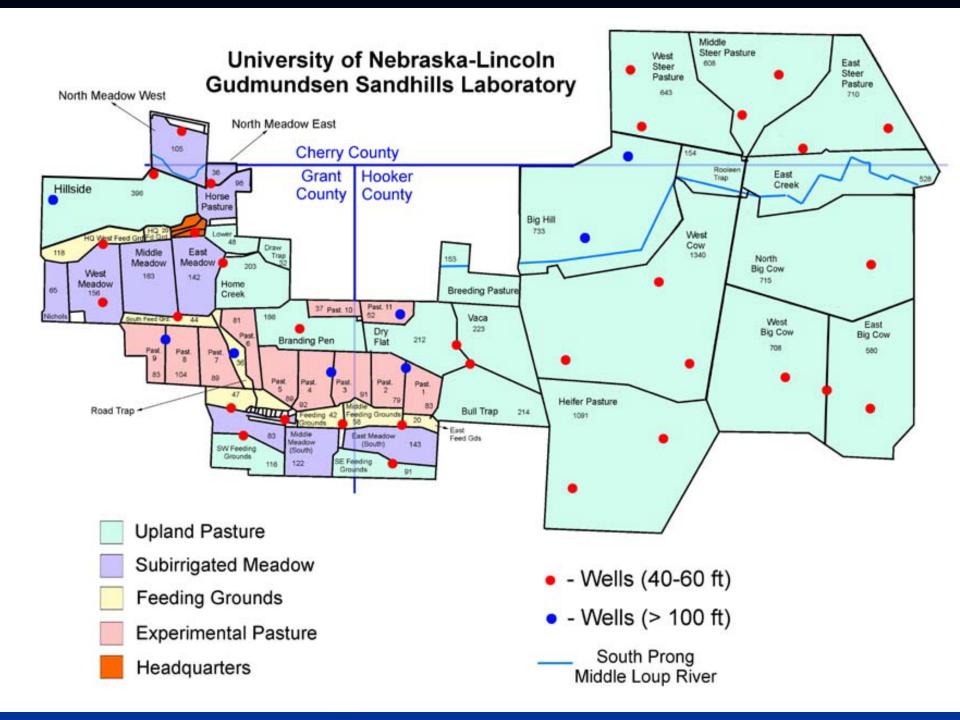
Nebraska Lincoln

Selection of a calving season


Rick Funston Reproductive Physiologist

West Central **Research & Extension** Center NR


Est. 1903


UNL – Beef Research and Extension

Over 2/3 of annual cow costs are due to nutrition

Calving time and Weaning time can greatly influence this cost

Time of Calving

How Will Changing Calving Time Affect:

- Winter Feed Requirements
- Range Forage Utilization
- Cow Productivity
- Calf Productivity At Weaning and Postweaning
- Opportunities for Alternative Postweaning Strategies
- Overall Profitability

	Season of Calving				
Risk	Winter	Spring	Summer		
Harvested Feed	High	Moderate	Low		
Bad Weather	High	Moderate	Low		
Weaning Weight	High	Moderate	Low		
Labor Conflicts	Low	Moderate	High		

Introduction

- Grazing during the winter reduces costs (Havens et al.2006)
 - increases net returns in beef systems compared to feeding harvested forages (Adams et al. 1996)
- Producers usually provide harvested forage
 - cow/calf producers feed an average of 2938 lbs of hay per cow each year (Clark et al. 2004)
- Protein supplement fed to spring-calving cows grazing winter range
 - No benefit to cow pregnancy rate in a March calving herd
 - Fetal Programming
 - prevents decreased weaning rate, (Stalker et al., 2006)
 - prevents decreased weight at weaning and harvest, (Stalker et al., 2007; Larson et al., 2009),
 - Increases quality grade (Larson et al., 2009)

Introduction

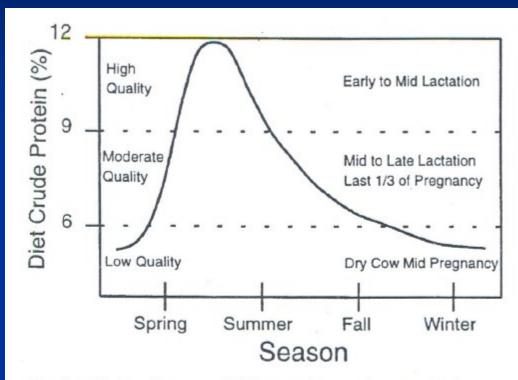
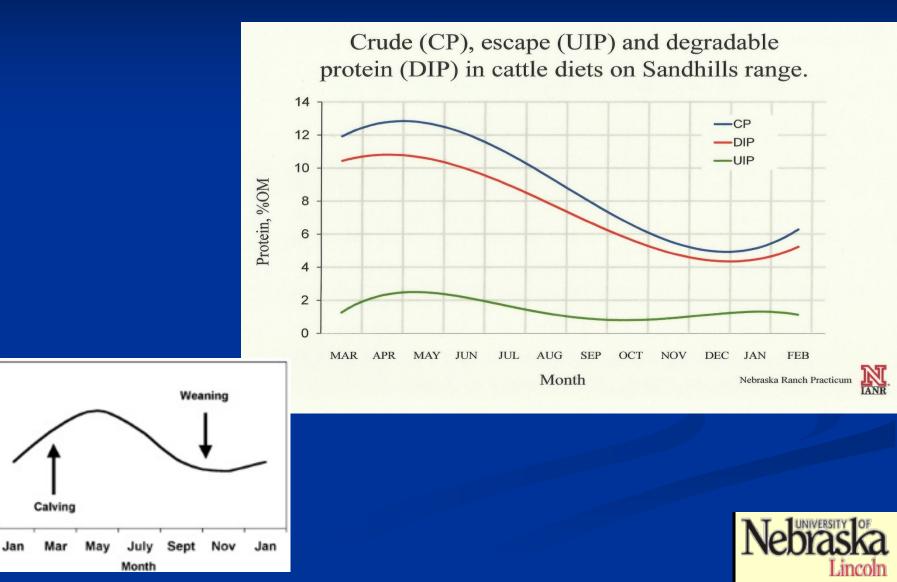



Fig. 3. Matching the cow with forages: General seasonal changes of crude protein (forage quality) in association with requirements at different levels of lactation and stages of pregnancy. Actual relationship of crude protein and season is dependent on location and plant community composition.

Introduction

Relative Energy Requirement

Calving Season

The amount of harvested feed required to maintain cows is related to calving date (Adams et al., 1996)

Traditional March calving date, range resources are dormant (Supplementation)

Leads to increased cost/cow (Stockton et al., 2007)

Matching cow nutrient requirements and peak forage quality

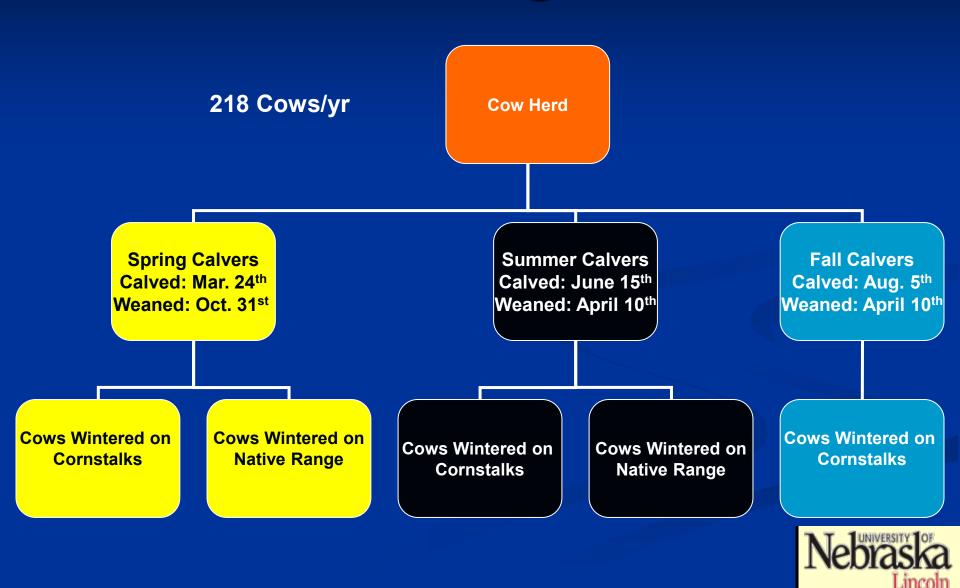
- "Choosing a late spring calving date that matches peaks in forage quality with peak lactation has the potential to reduce costs." (Stockton et al. 2007).
- High nutrient requirements during lactation are met through high quality grazed forage as apposed to supplement
- Low nutrient requirements during mid-gestation are matched with low forage value of dormant forage.
- Extended grazing period.
- Less harvested feed needed per animal.

Wintering System

 Use of cornstalk residues can be advantageous in beef production systems (Guteirrez-Ornelas, 1989).

Increasing stocking capacity of the ranch by using forage resources away from the ranch

Could be cost effective way to winter cattle



To determine the effect of 1) calving season and 2) wintering system on cow and subsequent calf performance

OW ments

Cow Management

Calving Date Performance					
ltem	SP	SU	FA		
Cow BW					
Pre-calving, lb	1172 ^c	1251 ^b	1384 ^a		
Pre-breeding, lb	1055 ^c	1254 ^b	1296 ª		
Weaning, Ib	1102 ^b	1154 ^a	1142 ^{ab}		
Cow BCS					
Pre-calving	5.3 ^c	5.9 ^b	6.6 ^a		
Pre-breeding	5.3 ^b	6.1 ^a	6.0 ^a		
Weaning	5.1	5.1	5.0		
^{a,b,c} Means with different su	perscripts are	different			

^{a,b,c}Means with different superscripts are different

Calving Date Performance

ltem	SP	SU	FA		
Calved, %	98.4	97.1	94.4		
Calves weaned/cow ¹	0.947	0.937	0.949		
Rebreeding, %	93.6	93.2	90.0		
¹ P-value for FA vs SP = 0.08; SU vs. FA = 0.13; represented as per cow					

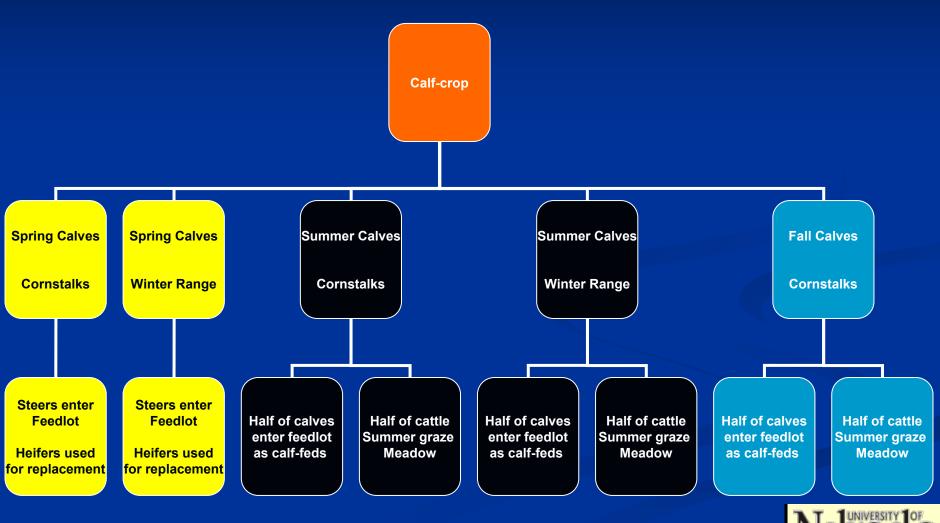
exposed

^{a,b,c}Means with different superscripts are different

Conclusions (Cow Performance)

Changes in body condition score and BW

 Weaning weight differences are a function of days of age at weaning


Spring born calves gain faster from calving to weaning than SU and FA calves, SU have the lowest gain

Wintering cows on stalks shows similar performance to wintering on range

Calf Treatments

Calf Management

Nebraska

WINTER PAIRS WITH DISTILLERS

Calving Date Performance

ltem	SP	SU	FA
Calf Performance			
Birth, lb	81	83	84
Pre-breeding, lb	203 ^a	231 ^b	226 ^b
Weaning, Ib	523 ^b	558 ^a	514 ^b
Calf ADG, lb/d	2.00 ^a	1.60 ^c	1.74 ^b
Adj. Weaning, Ib	491 ^a	410 ^c	441 ^b

^{a,b,c}Means with different superscripts are different

Calving Season (Observed)

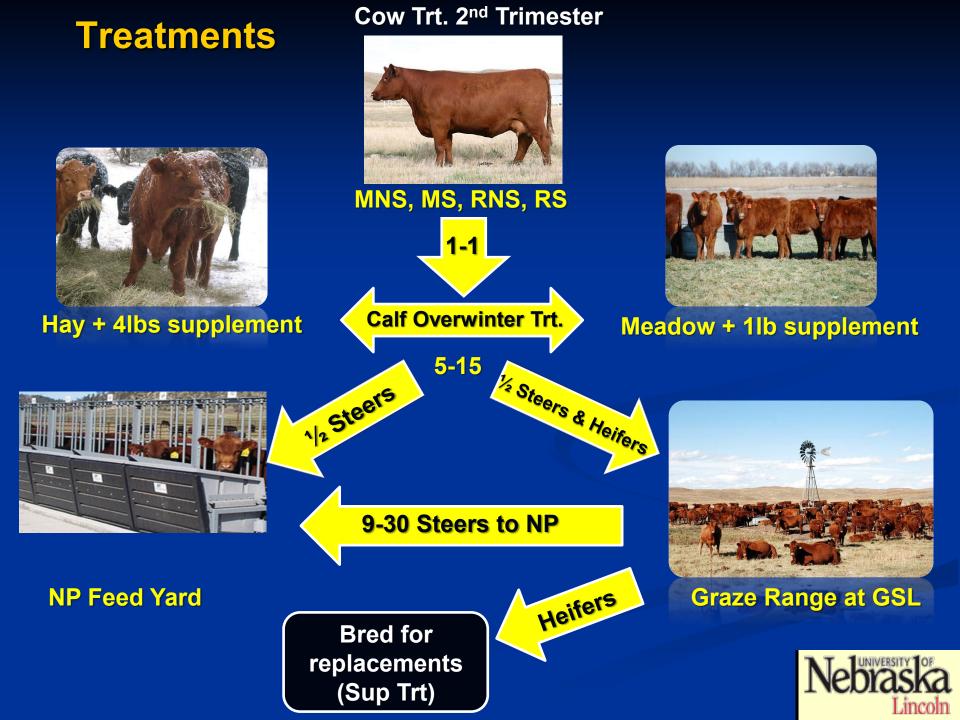
ltem	SP	SU	FA
Feedlot initial, lb	537 ^b	592 ^a	530 ^b
Final BW, Ib	1313 ^c	1430 ^a	1371 ^b
Days fed, lb	217	212	217
G:F	0.174 ^a	0.162 ^b	0.169 ^{ab}
HCW, Ib	827 ^c	900 ^a	865 ^b
Fat thickness, in	0.52	0.55	0.53
% Choice	86.1 ^a	84.9 ^a	72.6 ^b
% Over 1000 lb	0.5 ^b	7.9 ^a	2.2 ^b

Calving season and Calf Performance

Observed:

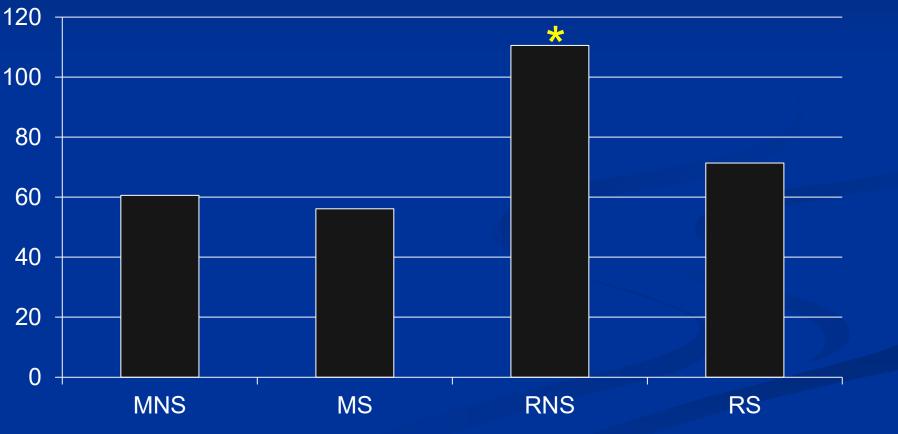
- SU heavier at feedlot entry than SP and FA
 HCW follows same trend with SP lightest
- G:F greater for SP intermediate for FA and lowest for SU
- Lower quality grade for FA calves

Adjusted:


No differences in performance

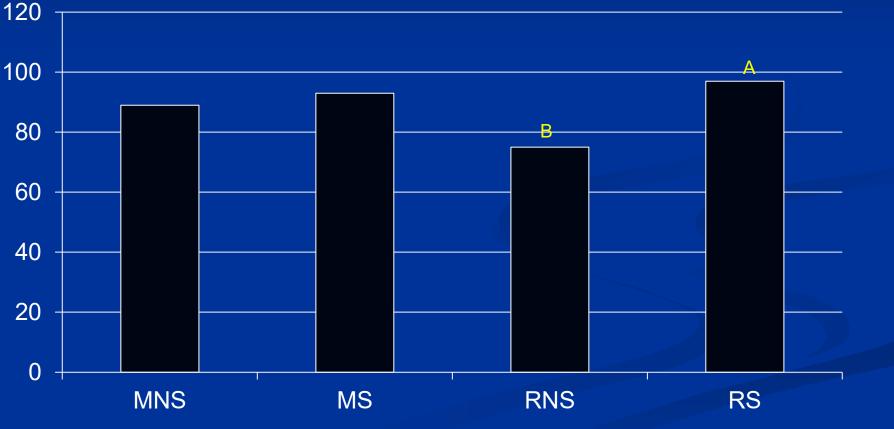
Objectives

To evaluate the effects of grazing dormant Sandhills winter range or meadow, with or without supplementation, on cow performance and the effects of post-weaning management on subsequent growth and performance of progeny.


Cow Performance

Effects of Winter pasture and supplementation on Cow performance

Winter Loss



* = P<0.05

Effects of Winter pasture and supplementation on Cow performance

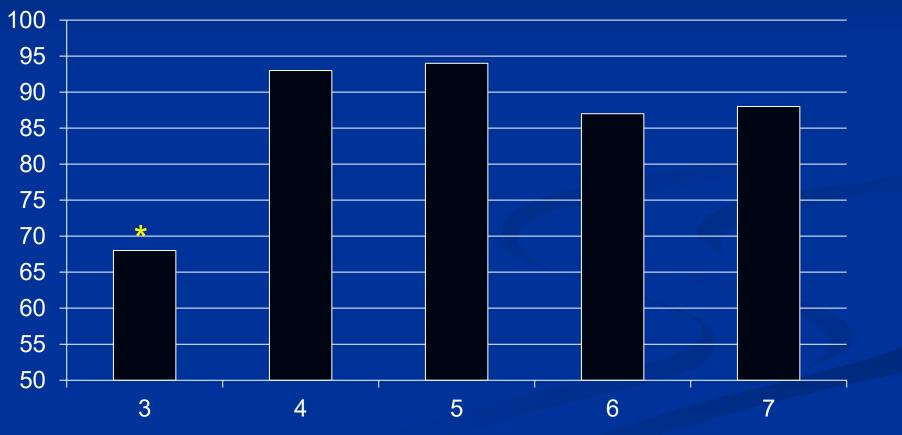
Pregnancy %

P<0.05

Table 1. Effects of winter grazing treatment and supplementation on cow and calf performance.

ltem	NS	S				-	
	NO	Э	NC	C	Grazing	Suppl.	Interac
			NS	S	Effect	Effect	tion
		Cow p	erforma	nce			
Pre-Winter BW, Ib	940	941	926	934	0.076	0.416	0.522
Pre-Winter BCS	4.6	4.6	4.7	4.6	0.333	0.036	0.742
Calving BW, lb	1037	1055	959	1019	0.004	0.031	0.213
Calving BCS	4.6	4.7	4.5	4.7	0.453	0.084	0.453
Winter BW Gain, Ib	97	116	34	86	0.005	0.022	0.240
Winter BCS Gain	-0.1	0.1	-0.2	0.1	0.350	0.008	0.501
Pre-breeding BW, Ib	1081	1098	1070	1091	0.457	0.131	0.850
Pre-breeding BCS	5.5	5.6	5.6	5.6	0.485	0.057	0.485
Pregnancy Rate, %	91.67 ^a	85.85 ^{ab}	77.45 ^b	85.05 ^{ab}	0.033	0.874	0.050
BW at Weaning, Ib	969	969	961	961	0.334	0.987	0.987
BCS at Weaning	4.5	4.4	4.5	4.4	0.768	0.062	0.162
Lactation BW Gain, Ib	-62	-84	-2	-54	0.038	0.075	0.446
Lactation BCS Gain	0.0	-0.3	0.0	-0.3	0.892	0.026	0.892
Calf Performance							
Calf Birth BW, lb	79.0 ^a	79.4 ^a	74.4 ^b	78.8 ^a	0.025	0.036	0.073
Calf Weaning BW, lb	436 ^a	436 ^a	413 ^b	438 ^a	0.143	0.081	0.076

Nebras


Lincoln

TOC Pregnancy Rate

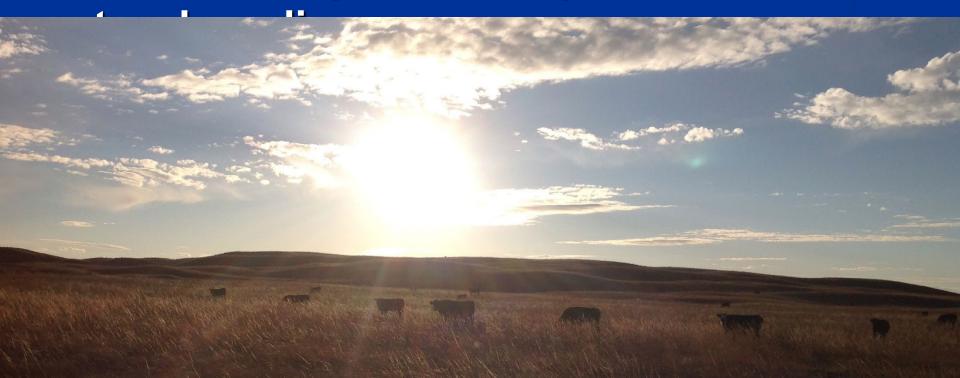
Trait		Mar	ch Ju	ine	August
% Pre	egnant	93.	.5 9	3.0	90.3
		May	/		
2010	3s	65			
	Older	93			
2011	3s	75			
	Older	93			
	Heifers		High 64	4 Low	5 Hebraska Lincoln

Effect of Age on Cow Pregnancy %


Pregnancy %

* = P<0.05

Impact of heifer development system on subsequent ADG and reproduction in two breeding seasons


Introduction

Reduced input heifer development systems have resulted in similar pregnancy rates compared to higher input systems (Funston & Deutscher, 2003; Martin et al., 2008, Eborn et al., 2013)

Clark et al., (2005) found that it is an economically viable system to retain more heifers, develop under a low input system, sell open heifers

Determine the effect of reduced input overwinter supplementation on heifer ADG and reproductive performance in

Materials and Methods

Treatment duration was mid-January to mid-April

Нау	Meadow
-Ad libitum hay	-Allowed to graze meadow
-1.81 kg/d supplement	-0.45 kg/d supplement

29.0% CP supplement cube containing;

processed grain by-products, plant protein products, roughage products, calcium carbonate, molasses products, urea, Vitamin A supplement, copper sulfate, zinc oxide, manganese sulfate, and monensin.

Results: March Heifers

March Heifer Body Weight by Treatment

	Нау	Meadow	SE	P - value
Weaning BW, Ib				
	414	420	2.7	0.63
Post Treatment BW, Ib				
	675	605	3.4	<.01
Pre Breeding BW, Ib				
	701	660	3.6	<.01
Pregnancy Diagnosis BW, lb				
	807	774	4.5	0.25
Pregnancy, %				
	88	86		

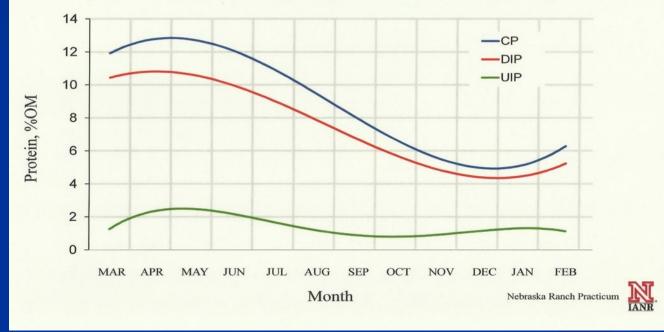
Results: May Heifers

May Heifer Body Weight by Treatment

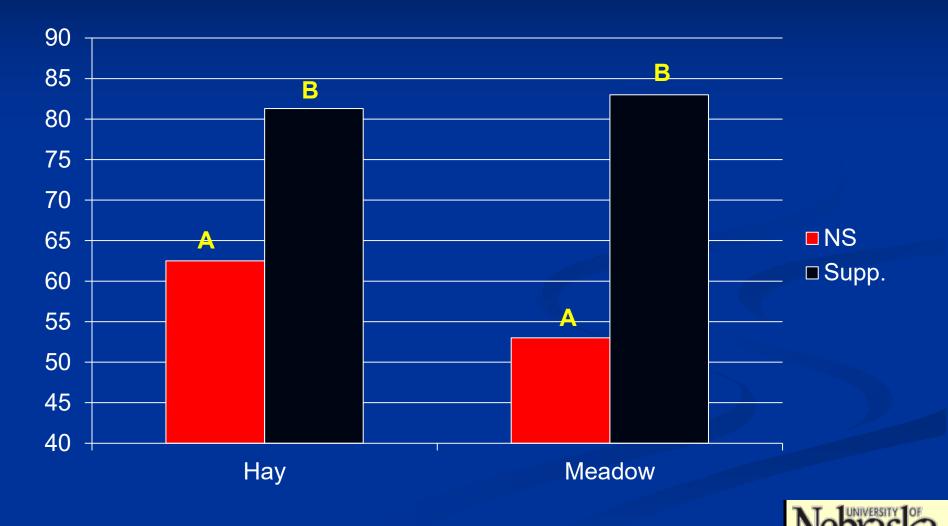
	Нау	Meadow	SE	P - value
Weaning BW, lb	425	425	2.40	0.91
Post Treatment BW, lb	596	510	2.72	<.01
Pre Breeding BW, lb	711	645	3.36	<.01
Pregnancy Diagnosis BW, lb	805	752	3.22	<.01
Pregnancy, %	66	61		

During the treatment period, heifers fed hay gained more

Meadow heifers experienced a compensatory gain resulting in similar body weights


No differences in pubertal status or pregnancy rates

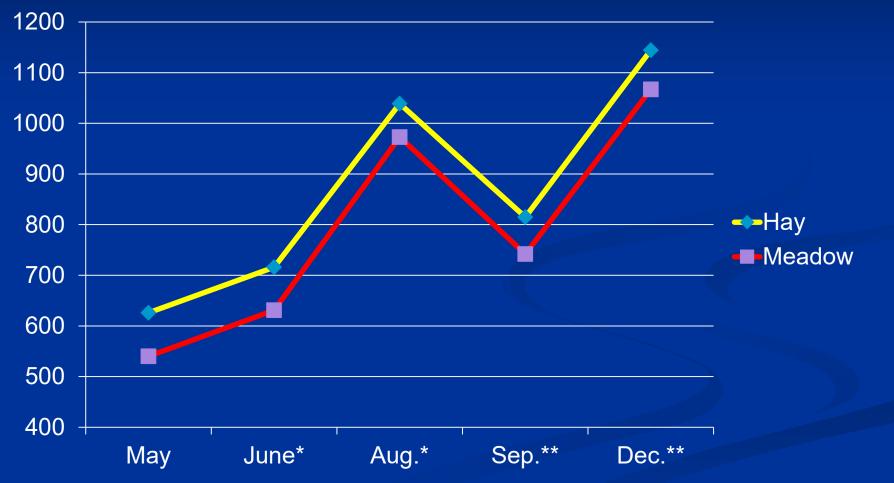
Meadow treatment resulted in a \$68.40 savings compared to Hay treatment


Supplemental Effects on Heifer Pregnancy %

Crude (CP), escape (UIP) and degradable protein (DIP) in cattle diets on Sandhills range.

Supplemental Effects on Heifer Pregnancy %

Lincoln



Steer Performance

Effects of Winter Treatment on Steer Performance

* Early shipped NP steers only

**GSL steers grazed to September only

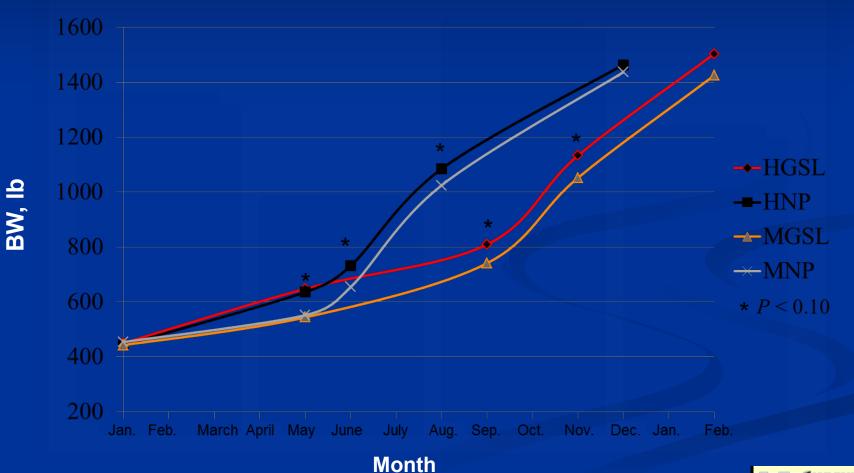


Table 2. Effects of winter treatment and feedlot systemon steer performance

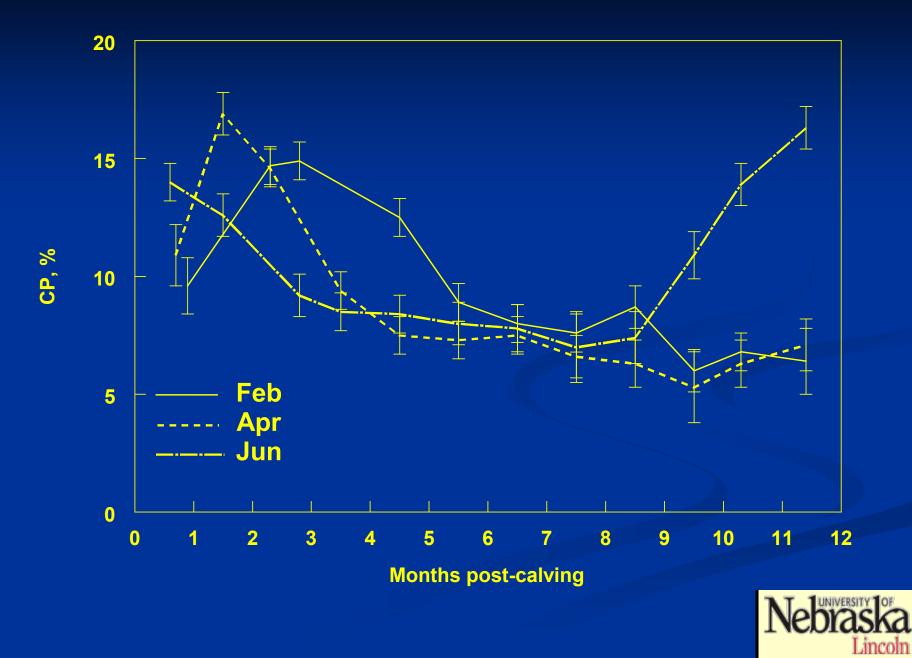
	На	Hay		Meadow		P-value		
ltem	Yearling- fed	Calf-fed	Yearling- fed	Calf-fed	Winter trt (W)	Feedlot System (F)	W*F	
May BW, Ib	622	607	534	570	0.009	0.563	0.101	
Winter ADG, Ib	1.45	1.38	0.76	1.04	0.010	0.533	0.145	
Feedlot Entry BW, Ib	894	689	827	620	<.001	<.001	0.930	
Final BW, Ib	1500	1419	1446	1385	0.029	0.001	0.593	
HCWT, Ib	944	894	908	871	0.019	0.001	0.571	
Feedlot ADG, Ib	4.15	3.90	4.18	4.11	0.150	0.053	0.285	
Marbling	499	475	498	503	0.230	0.363	0.179	
Fat thickness, in	0.6	0.6	0.6	0.6	0.674	0.268	0.920	
REA, in ²	14.7	14.6	14.6	14.3	0.221	0.237	0.642	
Observed DMI, Ib	27.5	24.8	26.4	24.2	0.150	<.001	0.679	
RFI	0.084	0.215	-0.138	-0.065	0.129	0.523	0.855	
GF	0.151	0.159	0.157	0.173	0.006	0.002	0.272	

Effects of overwinter treatment and feedlot system on BW

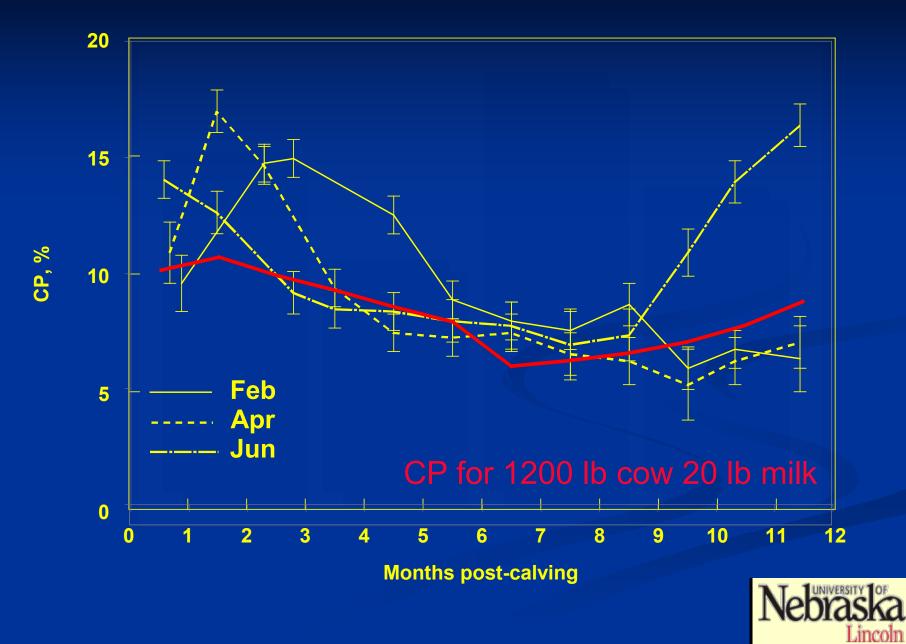
Nebraska Lincoln

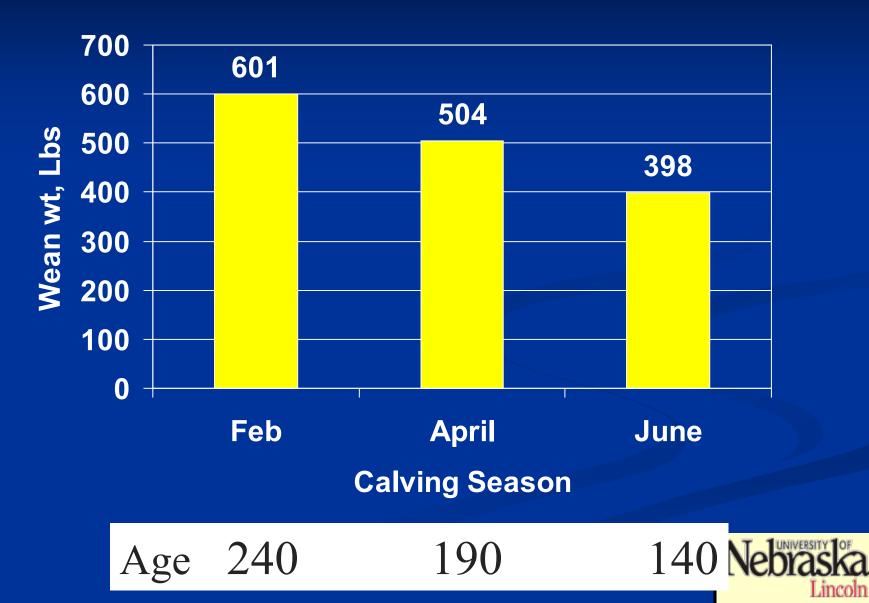
Cost of Early vs. Late Calving

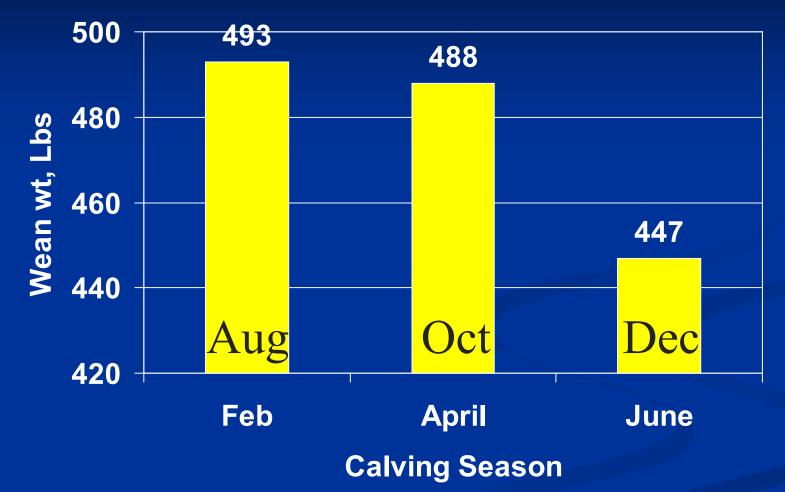
FORT KEOGH RANGE RESEARCH LABOR 100


COW MANAGEMENT

- 3 herds with 35 d breeding season
- February 1 calving
 - Wean in August (190 days of age)
 - Wean in October (240 days of age)
- April 1 calving
 - Wean in October (190 days of age)
 - Wean in December (240 days of age)
- May 25 calving
 - Wean in October (140 days of age)
 - Wean in December (190 days of age)




Diet crude protein

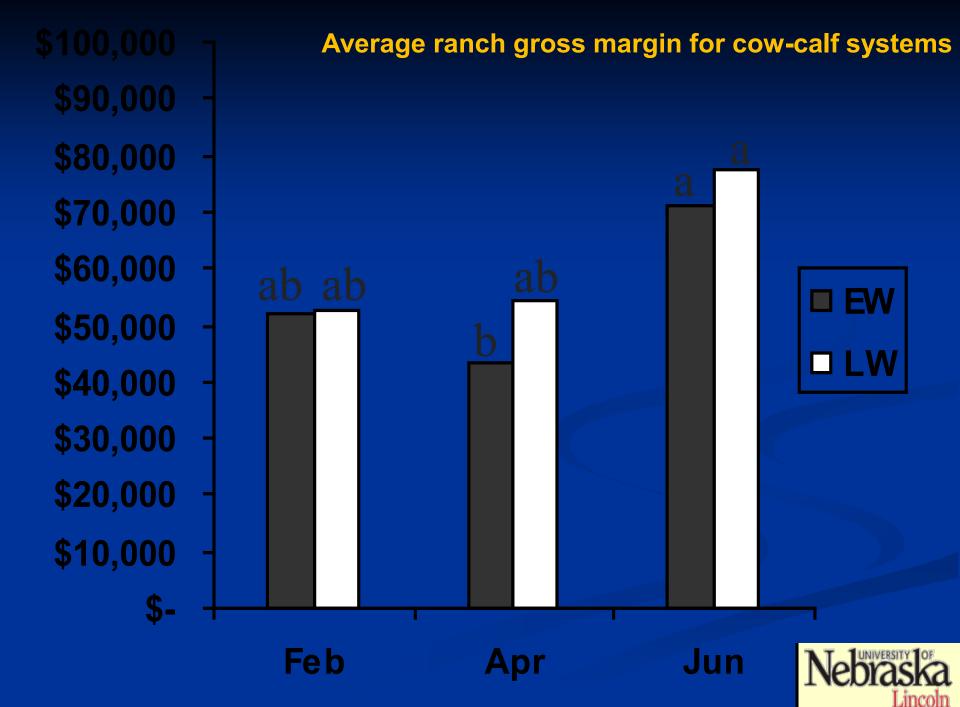

Diet crude protein

October Wean Wt

190 day Wean Wt

Approximate Feed Inputs Lb/cow/year

	Hay	Silage	Cake & grain	Total
February	1914	1023	352	3289
April	2143	220	352	2706
June	1012	-	166	1177


Reproductive performance

 No effect of calving season on pregnancy rates (~87%)

No effect of previous year's weaning time on pregnancy rates

Summary

	<u>Feb</u>	<u>April</u>	<u>June</u>
Wt change	Most		Least
Peak Milk	Latest		
Tot Milk*	Most		Least
WW (same date)	Most		Least
WW (same age)			Least

Feed inputs*

Most

Least

Considerations

Changes entire production cycle, not just calving date
Can change market
Must have feed resources

Observations: Later Calving

- Fewer health problems
- Conception rates vary
- Nutrition may be limiting during the breeding season
- Smaller calves at a constant age
- May be offset by higher price/cwt
- > Higher calf prices in December and January
- Many have integrated yearling operations
- April may be a good compromise

Southeast Region

calving date considerations

Heat Stress/Environment

- Combination of high temperature and high humidity
- Extreme heat index potential
- Increased parasite load
- Hurricane season, heavy rainfall, standing water

Potential Challenges

- Reduced reproduction in both the male and female
- Reduced calf performance
 - Parasites
 - Standing Water
- Low nutrient quality of mature/dormant forage
 - Maintaining BCS
 - Low reproductive success

Southeast Region

Management Strategies

- Breeding and calving timed to avoid high heat index and extremes in weather
- Heat tolerant Bos Indicus crossbreeding
- Aggressive vaccine and parasite treatment schedule
- Supplementation protocol to address nutrient deficits
- Selecting for a cow that matches her environment
 - moderate frame
 - moderate milk production

